Graphlit Platform
Developer PortalChangelogPlatform StatusMore InformationJoin Discord
  • Graphlit Platform
    • What is Graphlit?
    • Key Concepts
  • Getting Started
    • Sign up for Graphlit
    • Create Graphlit Project
    • For Python Developers
    • For Node.js Developers
    • For .NET Developers
  • 🚀Quickstart
    • Next.js applications
      • GitHub Code
    • Python applications
      • GitHub Code
  • Graphlit Data API
    • API Usage
      • API Endpoints
      • API Authentication
      • API Explorer
      • GraphQL 101
    • API Reference
      • Content
        • Ingest With Workflow
        • Ingest File
        • Ingest Encoded File
        • Ingest Web Page
        • Ingest Text
        • Semantic Search
          • Query All Content
          • Query Facets
          • Query By Name
          • Filter By Contents
        • Metadata Filtering
          • Filter By Observations
          • Filter By Feeds
          • Filter By Collections
          • Filter By Content Type
          • Filter By File Type
          • Filter By File Size Range
          • Filter By Date Range
        • Summarize Contents
        • Extract Contents
        • Publish Contents
      • Knowledge Graph
        • Labels
        • Categories
        • Persons
        • Organizations
        • Places
        • Events
        • Products
        • Repos
        • Software
      • Collections
      • Feeds
        • Create Feed With Workflow
        • Create RSS Feed
        • Create Podcast Feed
        • Create Web Feed
        • Create Web Search Feed
        • Create Reddit Feed
        • Create Notion Feed
        • Create YouTube Feed
        • User Storage Feeds
          • Create OneDrive Feed
          • Create Google Drive Feed
          • Create SharePoint Feed
        • Cloud Storage Feeds
          • Create Amazon S3 Feed
          • Create Azure Blob Feed
          • Create Azure File Feed
          • Create Google Blob Feed
        • Messaging Feeds
          • Create Slack Feed
          • Create Microsoft Teams Feed
          • Create Discord Feed
        • Email Feeds
          • Create Google Mail Feed
          • Create Microsoft Outlook Feed
        • Issue Feeds
          • Create Linear Feed
          • Create Jira Feed
          • Create GitHub Issues Feed
        • Configuration Options
      • Workflows
        • Ingestion
        • Indexing
        • Preparation
        • Extraction
        • Enrichment
        • Actions
      • Conversations
      • Specifications
        • Azure OpenAI
        • OpenAI
        • Anthropic
        • Mistral
        • Groq
        • Deepseek
        • Replicate
        • Configuration Options
      • Alerts
        • Create Slack Audio Alert
        • Create Slack Text Alert
      • Projects
    • API Changelog
    • Multi-tenant Applications
  • JSON Mode
    • Overview
    • Document JSON
    • Transcript JSON
  • Content Types
    • Files
      • Documents
      • Audio
      • Video
      • Images
      • Animations
      • Data
      • Emails
      • Code
      • Packages
      • Other
    • Web Pages
    • Text
    • Posts
    • Messages
    • Emails
    • Issues
  • Data Sources
    • Feeds
  • Platform
    • Developer Portal
      • Projects
    • Cloud Platform
      • Security
      • Subprocessors
  • Resources
    • Community
Powered by GitBook
On this page

Was this helpful?

  1. Graphlit Data API
  2. API Reference
  3. Feeds

Create Podcast Feed

Create RSS feed to ingest podcast episodes.

Let's ingest an RSS feed of an AI podcast, which provides a rich source of content for knowledge exploration.

The createFeed mutation enables the creation of a feed by accepting the feed name, type and rss feed parameters and it returns essential details, including the ID, name, state, and type of the newly generated feed.

Depending on the specified type parameter, Graphlit requires the specific feed parameters including the RSS uri.

Mutation:

mutation CreateFeed($feed: FeedInput!) {
  createFeed(feed: $feed) {
    id
    name
    state
    type
  }
}

Variables:

{
  "feed": {
    "type": "RSS",
    "rss": {
      "uri": "https://feeds.buzzsprout.com/1853100.rss"
    },
    "name": "Earley AI Podcast"
  }
}

Response:

{
  "type": "RSS",
  "id": "60830568-a2c3-4b3c-8f72-b12a775a3c79",
  "name": "Earley AI Podcast",
  "state": "ENABLED"
}

Podcast RSS Format

Podcast RSS contains a series of posts, which each contain metadata such as title, description, published date, podcast season and episode, and a URL to the audio recording of the podcast.

Graphlit parses and stores the post metadata, including any hyperlinks to PDFs or other web pages.

All textual information from the RSS post will be added to the searchable Graphlit index.

But also in the case of Podcast RSS, we will ingest an additional file content, linked to the source post content, which will automatically generate a transcript of the podcast audio recording. The text from the transcript will be added to the searchable index as well.

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet href="https://feeds.buzzsprout.com/styles.xsl" type="text/xsl"?>
<rss version="2.0" xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd" xmlns:podcast="https://podcastindex.org/namespace/1.0" xmlns:content="http://purl.org/rss/1.0/modules/content/" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
  <atom:link href="https://feeds.buzzsprout.com/1853100.rss" rel="self" type="application/rss+xml" />
  <atom:link href="https://pubsubhubbub.appspot.com/" rel="hub" xmlns="http://www.w3.org/2005/Atom" />
  <title>Earley AI Podcast</title>
  <lastBuildDate>Wed, 05 Jul 2023 17:27:36 -0400</lastBuildDate>
  <link>https://earleyai.buzzsprout.com</link>
  <language>en-us</language>
  <copyright>© 2023 Earley AI Podcast</copyright>
  <podcast:locked>yes</podcast:locked>
    <podcast:guid>69566782-4601-5f04-9af9-2025774146fa</podcast:guid>
    <itunes:author>Seth Earley &amp; Chris Featherstone</itunes:author>
  <itunes:type>episodic</itunes:type>
  <itunes:explicit>false</itunes:explicit>
  <description><![CDATA[In this podcast hosts Seth Earley & Chris Featherstone invite a broad array of thought leaders and practitioners to talk about what's possible in artificial intelligence as well as what is practical in the space as we move toward a world where AI is embedded in all aspects of our personal and professional lives. They explore what's emerging in technology, data science, and enterprise applications for artificial intelligence and machine learning and how to get from early stage AI projects to fully mature applications.Seth is founder & CEO of Earley Information Science and the award winning author of "The AI Powered Enterprise."  Chris is a technology executive and strategist interested in how AI and Machine Learning will enable next generation customer and workforce engagement..]]></description>
  <itunes:owner>
    <itunes:name>Seth Earley &amp; Chris Featherstone</itunes:name>
  </itunes:owner>
  <image>
     <url>https://storage.buzzsprout.com/variants/a11qmo1cr5s9a3w6lla8l2wsercr/60854458c4d1acdf4e1c2f79c4137142d85d78e379bdafbd69bd34c85f5819ad.jpg</url>
     <title>Earley AI Podcast</title>
     <link></link>
  </image>
  <itunes:image href="https://storage.buzzsprout.com/variants/a11qmo1cr5s9a3w6lla8l2wsercr/60854458c4d1acdf4e1c2f79c4137142d85d78e379bdafbd69bd34c85f5819ad.jpg" />
  <itunes:category text="Technology" />
  <itunes:category text="Business" />
  <item>
    <itunes:title>It’s All About the Data - Kirk Marple - Earley AI Podcast with Seth Earley &amp; Chris Featherstone - Episode # 031</itunes:title>
    <title>It’s All About the Data - Kirk Marple - Earley AI Podcast with Seth Earley &amp; Chris Featherstone - Episode # 031</title>
    <description><![CDATA[<p>Today’s guest is Kirk Marple, Technical Founder and CEO at Unstruk Data. Kirk joins Seth Earley and Chris Featherstone to  discuss organizing historical data and long-term memory. Kirk emphasizes the importance of organizing data in a manner that allows for seamless integration with novel models and shares valuable advice on understanding data. </p><p><b>Takeaways:</b></p><ul><li>The semantic web serves as a powerful tool for optimizing business applications and data organization.  </li><li>A prevalent misconception surrounding AI is that individuals need to construct their own models and be data science experts. Advancements unfold at a rapid pace. People need to harness the power of AI and employ it strategically within their business operations.</li><li>Data lies at the core of everything. To optimize the utilization of emerging models effectively it is important to organize data in a way that seamlessly integrates with novel models. AI implementation needs to be approached with a practical mindset.  </li><li>In the last 6-9 months large language models have developed the ability to engage in meaningful conversations with their underlying data. This aspect of interactive communication tends to be overlooked. The focus often leans towards retrieval and entity extraction.</li><li>Over the years, people have addressed the issue of non-equalization of data intent through the provision of taxonomies. In the future Kirk anticipates that AI will play a pivotal role in enhancing this process. </li></ul><p><b>Quote of the Show:</b></p><ul><li>“It’s a data set. Not just a hard drive.” (03:50)</li></ul><p><b>Links:</b></p><ul><li>LinkedIn: <a href='https://www.linkedin.com/in/kirkmarple/'>https://www.linkedin.com/in/kirkmarple/</a> </li><li>Website: <a href='https://www.unstruk.com/'>https://www.unstruk.com/</a> </li><li>Twitter: <a href='https://twitter.com/unstruk'>https://twitter.com/unstruk</a> </li></ul><p><b>Ways to Tune In:</b></p><ul><li>Earley AI Podcast: <a href='https://www.earley.com/earley-ai-podcast-home'>https://www.earley.com/earley-ai-podcast-home</a> </li><li>Apple Podcast: <a href='https://podcasts.apple.com/podcast/id1586654770'>https://podcasts.apple.com/podcast/id1586654770</a> </li><li>Spotify: <a href='https://open.spotify.com/show/5nkcZvVYjHHj6wtBABqLbE?si=73cd5d5fc89f4781'>https://open.spotify.com/show/5nkcZvVYjHHj6wtBABqLbE?si=73cd5d5fc89f4781</a> </li><li>iHeart Radio: <a href='https://www.iheart.com/podcast/269-earley-ai-podcast-87108370/'>https://www.iheart.com/podcast/269-earley-ai-podcast-87108370/</a> </li><li>Stitcher: <a href='https://www.stitcher.com/show/earley-ai-podcast'>https://www.stitcher.com/show/earley-ai-podcast</a> </li><li>Amazon Music: <a href='https://music.amazon.com/podcasts/18524b67-09cf-433f-82db-07b6213ad3ba/earley-ai-podcast'>https://music.amazon.com/podcasts/18524b67-09cf-433f-82db-07b6213ad3ba/earley-ai-podcast</a> </li><li>Buzzsprout: <a href='https://earleyai.buzzsprout.com/'>https://earleyai.buzzsprout.com/</a> </li></ul><p><b>Thanks to our sponsors:</b></p> <ul> <li><a href='https://www.marketingaiinstitute.com/'>Marketing AI Institute</a></li> <li><a href='https://www.cmswire.com/'>CMSWire</a></li> <li><a href='https://www.earley.com/'>Earley Information Science</a></li> <li><a href='https://www.amazon.com/AI-Powered-Enterprise-Ontologies-Business-Profitable/dp/1928055508'>AI Powered Enterprise Book</a></li> </ul>]]></description>
    <content:encoded><![CDATA[<p>Today’s guest is Kirk Marple, Technical Founder and CEO at Unstruk Data. Kirk joins Seth Earley and Chris Featherstone to  discuss organizing historical data and long-term memory. Kirk emphasizes the importance of organizing data in a manner that allows for seamless integration with novel models and shares valuable advice on understanding data. </p><p><b>Takeaways:</b></p><ul><li>The semantic web serves as a powerful tool for optimizing business applications and data organization.  </li><li>A prevalent misconception surrounding AI is that individuals need to construct their own models and be data science experts. Advancements unfold at a rapid pace. People need to harness the power of AI and employ it strategically within their business operations.</li><li>Data lies at the core of everything. To optimize the utilization of emerging models effectively it is important to organize data in a way that seamlessly integrates with novel models. AI implementation needs to be approached with a practical mindset.  </li><li>In the last 6-9 months large language models have developed the ability to engage in meaningful conversations with their underlying data. This aspect of interactive communication tends to be overlooked. The focus often leans towards retrieval and entity extraction.</li><li>Over the years, people have addressed the issue of non-equalization of data intent through the provision of taxonomies. In the future Kirk anticipates that AI will play a pivotal role in enhancing this process. </li></ul><p><b>Quote of the Show:</b></p><ul><li>“It’s a data set. Not just a hard drive.” (03:50)</li></ul><p><b>Links:</b></p><ul><li>LinkedIn: <a href='https://www.linkedin.com/in/kirkmarple/'>https://www.linkedin.com/in/kirkmarple/</a> </li><li>Website: <a href='https://www.unstruk.com/'>https://www.unstruk.com/</a> </li><li>Twitter: <a href='https://twitter.com/unstruk'>https://twitter.com/unstruk</a> </li></ul><p><b>Ways to Tune In:</b></p><ul><li>Earley AI Podcast: <a href='https://www.earley.com/earley-ai-podcast-home'>https://www.earley.com/earley-ai-podcast-home</a> </li><li>Apple Podcast: <a href='https://podcasts.apple.com/podcast/id1586654770'>https://podcasts.apple.com/podcast/id1586654770</a> </li><li>Spotify: <a href='https://open.spotify.com/show/5nkcZvVYjHHj6wtBABqLbE?si=73cd5d5fc89f4781'>https://open.spotify.com/show/5nkcZvVYjHHj6wtBABqLbE?si=73cd5d5fc89f4781</a> </li><li>iHeart Radio: <a href='https://www.iheart.com/podcast/269-earley-ai-podcast-87108370/'>https://www.iheart.com/podcast/269-earley-ai-podcast-87108370/</a> </li><li>Stitcher: <a href='https://www.stitcher.com/show/earley-ai-podcast'>https://www.stitcher.com/show/earley-ai-podcast</a> </li><li>Amazon Music: <a href='https://music.amazon.com/podcasts/18524b67-09cf-433f-82db-07b6213ad3ba/earley-ai-podcast'>https://music.amazon.com/podcasts/18524b67-09cf-433f-82db-07b6213ad3ba/earley-ai-podcast</a> </li><li>Buzzsprout: <a href='https://earleyai.buzzsprout.com/'>https://earleyai.buzzsprout.com/</a> </li></ul><p><b>Thanks to our sponsors:</b></p> <ul> <li><a href='https://www.marketingaiinstitute.com/'>Marketing AI Institute</a></li> <li><a href='https://www.cmswire.com/'>CMSWire</a></li> <li><a href='https://www.earley.com/'>Earley Information Science</a></li> <li><a href='https://www.amazon.com/AI-Powered-Enterprise-Ontologies-Business-Profitable/dp/1928055508'>AI Powered Enterprise Book</a></li> </ul>]]></content:encoded>
    <itunes:author>Seth Earley &amp; Chris Featherstone</itunes:author>
    <enclosure url="https://www.buzzsprout.com/1853100/12888605-it-s-all-about-the-data-kirk-marple-earley-ai-podcast-with-seth-earley-chris-featherstone-episode-031.mp3" length="29183350" type="audio/mpeg" />
    <guid isPermaLink="false">Buzzsprout-12888605</guid>
    <pubDate>Mon, 22 May 2023 05:00:00 -0400</pubDate>
    <itunes:duration>2430</itunes:duration>
    <itunes:keywords></itunes:keywords>
    <itunes:season>1</itunes:season>
    <itunes:episode>31</itunes:episode>
    <itunes:episodeType>full</itunes:episodeType>
    <itunes:explicit>false</itunes:explicit>
  </item>
</channel>
</rss>

Last updated 1 year ago

Was this helpful?

RSS is formatted as , and here is an example of the raw XML from a Podcast RSS URL.

XML
Cover

Queries

Cover

Mutations

Cover

Objects