Create Completion Model
Specification: Create Completion Model
User Intent
Operation
TypeScript (Canonical)
import { Graphlit } from 'graphlit-client';
import { EntityState, ModelServiceTypes, SpecificationTypes } from 'graphlit-client/dist/generated/graphql-types';
const graphlit = new Graphlit();
// Create GPT-4o specification for RAG
const specificationInput: SpecificationInput = {
name: 'GPT-4o for RAG',
type: SpecificationTypes.Completion,
serviceType: ModelServiceTypes.OpenAi,
openAI: {
model: OpenAiModels.Gpt4O_128K,
temperature: 0.1,
probability: 0.2,
completionTokenLimit: 4000
}
};
const response = await graphlit.createSpecification(specificationInput);
const specId = response.createSpecification.id;
console.log(`Specification created: ${specId}`);
// Use specification in conversation
const conversation = await graphlit.createConversation({
name: 'RAG Chat',
specification: { id: specId }
});
// Or use specification in promptConversation
const answer = await graphlit.promptConversation({
prompt: 'Explain the API',
specification: { id: specId }
});
console.log(answer.message.message);Create specification (snake_case)
Use in conversation
Parameters
SpecificationInput (Required)
Provider-Specific Configuration
Response
Developer Hints
Completion vs Other Specification Types
Type
Purpose
Used By
Temperature Settings by Use Case
Choosing the Right Model
Reusable Specifications
Variations
1. Basic GPT-4o Specification
2. Claude Sonnet for High Accuracy
3. Budget-Friendly with GPT-4o-mini
4. Groq for Ultra-Fast Inference
5. Gemini for Cost Efficiency
6. Long-Form Responses
Common Issues
Production Example
Last updated