Cost Optimization with Model Selection

User Intent

"How do I optimize costs by choosing the right models? Show me cost-effective configurations."

Operation

Concept: Model selection strategy for cost vs quality Use Case: Balance performance and budget


Model Cost Comparison

Completion Models (per 1M tokens)

GPT-4: $30 input, $60 output - Highest quality GPT-4o: $5 input, $15 output - Best balance GPT-3.5: $0.50 input, $1.50 output - Budget option Claude 3.5 Sonnet: $3 input, $15 output - Good value Gemini 1.5 Pro: $1.25 input, $5 output - Most economical

Embedding Models

text-embedding-3-large: $0.13/1M tokens - Highest quality text-embedding-3-small: $0.02/1M tokens - Best value text-embedding-ada-002: $0.10/1M tokens - Legacy


Cost Optimization Strategies

1. Choose Right Model for Task

2. Optimize Token Usage

3. Cache Results


Cost Estimation

RAG Query (typical):

  • Search: ~1K tokens input

  • Response: ~500 tokens output

  • GPT-4o cost: ~$0.01 per query

  • GPT-4 cost: ~$0.06 per query (6x more)

Entity Extraction (per document):

  • 10-page PDF: ~5K tokens

  • GPT-4o cost: ~$0.10 per document

  • GPT-4 cost: ~$0.30 per document (3x more)


Best Practices

  1. Default to GPT-4o for most use cases

  2. Upgrade to GPT-4 only when quality critical

  3. Use GPT-3.5 for simple, high-volume tasks

  4. Cache aggressively to avoid repeated calls

  5. Monitor usage in Developer Portal

  6. Set token limits to prevent runaway costs


Last updated

Was this helpful?