Python
Install the Python SDK and start building AI applications with semantic memory.
Build AI applications with Python using the Graphlit SDK.
Installation
Install the Graphlit client with pip:
pip install graphlit-clientRequirements:
Python 3.8 or higher
Graphlit account with API credentials
Quick Start
import asyncio
import os
from graphlit import Graphlit
from graphlit_api import *
async def main():
# Reads from environment variables automatically
graphlit = Graphlit()
# Ingest content
response = await graphlit.client.ingest_text(
name="Product Requirements",
text="Our AI agent needs persistent memory across sessions..."
)
print(f"✅ Memory created: {response.ingest_text.id}")
asyncio.run(main())That's it! The SDK automatically reads GRAPHLIT_ORGANIZATION_ID, GRAPHLIT_ENVIRONMENT_ID, and GRAPHLIT_JWT_SECRET from your environment.
Configuration
Environment Variables (Production)
Create a .env file (never commit this):
GRAPHLIT_ORGANIZATION_ID=your_actual_org_id
GRAPHLIT_ENVIRONMENT_ID=your_actual_env_id
GRAPHLIT_JWT_SECRET=your_actual_jwt_secretLoad it with python-dotenv:
import asyncio
from dotenv import load_dotenv
from graphlit import Graphlit
load_dotenv() # Loads .env file
async def main():
graphlit = Graphlit() # Reads from environment
# Your code here
asyncio.run(main())Install python-dotenv:
pip install python-dotenvSecurity: Add .env to your .gitignore immediately. Use platform secrets (AWS Secrets Manager, etc.) in production deployments.
Alternative: Explicit Configuration
Only use if you need to override environment variables:
from graphlit import Graphlit
import os
graphlit = Graphlit(
organization_id=os.environ['GRAPHLIT_ORGANIZATION_ID'],
environment_id=os.environ['GRAPHLIT_ENVIRONMENT_ID'],
jwt_secret=os.environ['GRAPHLIT_JWT_SECRET']
)Common Patterns
Ingest Content
# From URL
response = await graphlit.client.ingest_uri(
uri="https://example.com/document.pdf"
)
# From text
response = await graphlit.client.ingest_text(
name="Meeting Notes",
text="Discussion about Q4 planning..."
)Search Memory
response = await graphlit.client.query_contents(
filter=ContentFilter(
search="quarterly planning"
)
)
for content in response.contents.results:
print(f"📄 {content.name}")Chat with Context
# Create conversation
conversation = await graphlit.client.create_conversation(
conversation=ConversationInput(
name="AI Assistant"
)
)
# Ask questions
response = await graphlit.client.prompt_conversation(
prompt="What did we discuss about Q4 planning?",
id=conversation.create_conversation.id
)
print(response.prompt_conversation.message.message)Next Steps
Quickstarts:
Quickstart: Your First Agent - Build a streaming agent in 7 minutes
AI Agents - Create agents with persistent memory
Knowledge Graph - Extract entities and relationships
Examples:
Python Notebooks - 60+ working examples
Streamlit Apps - Full UI applications
Resources:
Use Case Library - 100+ code examples
Ask Graphlit - AI code assistant
Join Discord - Get help from the community
Last updated
Was this helpful?